Overview
arrays
is a module that provides utility functions to make working with arrays easier.
Examples:
import arrays fn main() { a := [1, 5, 7, 0, 9] assert arrays.min(a)! == 0 assert arrays.max(a)! == 9 assert arrays.idx_min(a)! == 3 }
Aliases
This section is empty.
Constants
This section is empty.
Sum types
This section is empty.
Functions
carray_to_varray copies a C byte array into a V array of type T
.
See also: cstring_to_vstring
fn chunk[T](array []T, size int) [][]T
chunk array into a single array of arrays where each element is the next size
elements of the original
Example:
arrays.chunk([1, 2, 3, 4, 5, 6, 7, 8, 9], 2)) // => [[1, 2], [3, 4], [5, 6], [7, 8], [9]]
fn concat[T](a []T, b []T) []T
concatenate an array with an arbitrary number of additional values
NOTE: if you have two arrays, you should simply use the <<
operator directly
Example:
arrays.concat([1, 2, 3], 4, 5, 6) == [1, 2, 3, 4, 5, 6] // => true
Example:
arrays.concat([1, 2, 3], ...[4, 5, 6]) == [1, 2, 3, 4, 5, 6] // => true
Example:
arr << [4, 5, 6] // does what you need if arr is mutable
fn copy[T](mut dst &[]T, src []T) int
copy copies the src
array elements to the dst
array.
The number of the elements copied is the minimum of the length of both arrays.
Returns the number of elements copied.
filter_indexed filters elements based on predicate
function being invoked on each element with its index in the original array.
fn flat_map[T, R](array []T, transform fn (T) []R) []R
flat_map creates a new array populated with the flattened result of calling transform function being invoked on each element of list
.
fn flat_map_indexed[T, R](array []T, transform fn (int, T) []R) []R
flat_map_indexed creates a new array populated with the flattened result of calling the transform
function being invoked on each element with its index in the original array.
fn flatten[T](array [][]T) []T
flatten flattens n + 1 dimensional array into n dimensional array
Example:
arrays.flatten([[1, 2, 3], [4, 5]]) // => [1, 2, 3, 4, 5]
fn fold[T, R](array []T, init R, fold_op fn (R, T) R) R
fn fold_indexed[T, R](array []T, init R, fold_op fn (int, R, T) R) R
fold_indexed sets acc = init
, then successively calls acc = fold_op(idx, acc, elem)
for each element in array
.
returns acc
.
fn group[T](arrays [][]T) [][]T
group n arrays into a single array of arrays with n elements
This function is analogous to the "zip" function of other languages.
To fully interleave two arrays, follow this function with a call to flatten
.
NOTE: An error will be generated if the type annotation is omitted.
Example:
arrays.group([1,2,3],[4,5,6]) // => [[1, 4], [2, 5], [3, 6]]
fn group_by[K, V](array []V, grouping_op fn (V) K) map[K][]V
group_by groups together elements, for which the grouping_op
callback produced the same result.
Example:
arrays.group_by(['H', 'el', 'lo'], fn (v string) int { return v.len }) // => {1: ['H'], 2: ['el', 'lo']}
fn idx_max[T](array []T) !int
idx_max returns the index of the maximum value in the array
Example:
arrays.idx_max([1,2,3,0,9]) // => 4
fn idx_min[T](array []T) !int
idx_min returns the index of the minimum value in the array
Example:
arrays.idx_min([1,2,3,0,9]) // => 3
index_of_first returns the index of the first element of array
, for which the predicate function returns true.
If predicate does not return true for any of the elements, then index_of_first will return -1.
Example:
arrays.index_of_first([4,5,0,7,0,9], fn(idx int, x int) bool { return x == 0 }) == 2
index_of_last returns the index of the last element of array
, for which the predicate function returns true.
If predicate does not return true for any of the elements, then index_of_last will return -1.
Example:
arrays.index_of_last([4,5,0,7,0,9], fn(idx int, x int) bool { return x == 0 }) == 4
fn lower_bound[T](array []T, val T) !T
returns the smallest element >= val, requires array
to be sorted
Example:
arrays.lower_bound([2, 4, 6, 8], 3)? // => 4
fn map_indexed[T, R](array []T, transform fn (int, T) R) []R
map_indexed creates a new array populated with the result of calling the transform
function being invoked on each element with its index in the original array.
fn map_of_counts[T](array []T) map[T]int
map_of_counts returns a map, where each key is an unique value in array
, and each value for that key is how many times that value occures in array
.
It can be useful for building histograms of discrete measurements.
Example:
arrays.map_of_counts([1,2,3,4,4,2,1,4,4]) == {1: 2, 2: 2, 3: 1, 4: 4}
fn map_of_indexes[T](array []T) map[T][]int
map_of_indexes returns a map, where each key is an unique value in array
, and each value for that key is an array, containing the indexes in array
, where that value has been found.
Example:
arrays.map_of_indexes([1,2,3,4,4,2,1,4,4,999]) == {1: [0, 6], 2: [1, 5], 3: [2], 4: [3, 4, 7, 8], 999: [9]}
fn max[T](array []T) !T
fn merge[T](a []T, b []T) []T
merge two sorted arrays (ascending) and maintain sorted order
Example:
arrays.merge([1,3,5,7], [2,4,6,8]) // => [1,2,3,4,5,6,7,8]
fn min[T](array []T) !T
fn reduce[T](array []T, reduce_op fn (T, T) T) !T
reduce sets acc = array[0]
, then successively calls acc = reduce_op(acc, elem)
for each remaining element in array
.
returns the accumulated value in acc
.
returns an error if the array is empty.
See also: fold.
Example:
arrays.reduce([1, 2, 3, 4, 5], fn (t1 int, t2 int) int { return t1 * t2 })! // => 120
fn reduce_indexed[T](array []T, reduce_op fn (int, T, T) T) !T
reduce_indexed sets acc = array[0]
, then successively calls acc = reduce_op(idx, acc, elem)
for each remaining element in array
.
returns the accumulated value in acc
.
returns an error if the array is empty.
See also: fold_indexed.
fn rotate_left[T](mut array &[]T, mid int)
rotate_left rotates the array in-place such that the first mid
elements of the array move to the end while the last array.len - mid
elements move to the front. After calling rotate_left
, the element previously at index mid
will become the first element in the array.
Example:
mut x := [1,2,3,4,5,6] arrays.rotate_left(mut x, 2) println(x) // [3, 4, 5, 6, 1, 2]
fn rotate_right[T](mut array &[]T, k int)
rotate_right rotates the array in-place such that the first array.len - k
elements of the array move to the end while the last k
elements move to the front. After calling rotate_right
, the element previously at index array.len - k
will become the first element in the array.
Example:
mut x := [1,2,3,4,5,6] arrays.rotate_right(mut x, 2) println(x) // [5, 6, 1, 2, 3, 4]
fn sum[T](array []T) !T
sum up array, return nothing when array has no elements
NOTICE: currently V has bug that cannot make sum function takes custom struct with + operator overloaded which means you can only pass array of numbers for now.
TODO: Fix generic operator overloading detection issue.
Example:
arrays.sum([1, 2, 3, 4, 5])? // => 15
fn upper_bound[T](array []T, val T) !T
returns the largest element <= val, requires array
to be sorted
Example:
arrays.upper_bound([2, 4, 6, 8], 3)! // => 2
fn window[T](array []T, attr WindowAttribute) [][]T
get snapshots of the window of the given size sliding along array with the given step, where each snapshot is an array.
size
- snapshot sizestep
- gap size between each snapshot, default is 1.
Example:
arrays.window([1, 2, 3, 4], size: 2) // => [[1, 2], [2, 3], [3, 4]]
Example:
arrays.window([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], size: 3, step: 2) // => [[1, 2, 3], [3, 4, 5], [5, 6, 7], [7, 8, 9]]
Structs
Interfaces
This section is empty.
Enums
This section is empty.
binary search, requires
array
to be sorted, returns index of found item or error.Binary searches on sorted lists can be faster than other array searches because at maximum the algorithm only has to traverse log N elements
Example: